Atomic Structure

Early Theories of Matter

· Science as we know it did not exist several thousand years ago

Democritus (460-370 BC)

Democritus' Theory

- 1. Matter is composed of ______ through which atoms move
- 2. Atoms are solid, ______, indestructible, and indivisible
- 3. Different atoms have different _____ and
- 4. The differing properties of matter are due to the size, shape, and movement of _____
- 5. Changes in matter result from changes in the of atoms and not the atoms themselves

John Dalton

 John Dalton was the next scientist to propose a theory about the atom in the 19th century

Dalton's Atomic Theory

- 1. All matter is composed of extremely small particles called _____
- 3. Atoms cannot be ______, ____, or
- 4. Different atoms combine in simple whole number to form compounds
- 5. In a ______, atoms are separated, combined, or rearranged

Basic Definitions

- _____ smallest unit of an element that retains the properties of that element
- Atoms are made up of several _____ particles called , , , and

_____,

Protons, Neutrons, & Electrons

- ______ have a ______
 charge and are found in the nucleus of the atom
- _____ have _____ charge and are also found in the nucleus of an atom
- have a ______
 charge and are found on the outside of the nucleus

______ – made up of protons and neutrons, has an overall ______ charge

Atomic Structure

TABLE 2.1 Comparison of the Proton, Neutron, and Electron				
Farticle	Charge	Mass (anna)		
Proton	Positive (1+)	1.0073		
Neutron	None (neutral)	1.0087		
Electron	Negative (1-)	5.486×10^{-4}		

JJ Thomson

- JJ Thomson used the ______ experiment to determine the ______ to ______ ratio of an electron.
- He identified the first subatomic particle, the
- He proposed the _____ model of the atom
- Credited for discovering the ______

Robert Millikan

· Millikan is noted for his famous Millikan's

This experiment determined the and the ________

of an electron

Earnest Rutherford

- Rutherford's _____ Experiment helped to determine the existence of the ______
- Rutherford proposed that the nucleus was ______ and

charged
 roposed the _____ model which stated

that there was a nucleus with a positive charge and electrons around the outside

James Chadwick

- Chadwick showed that the nucleus also contained ______
- · He is credited for the discovery of the

Atomic Numbers

- The _____ of an element is the number of _____ in the nucleus of an atom of that element.
- It is the number of ______ that determines the identity of an element.
- The number of protons for an element _____ be changed.

Atomic Numbers

- Because atoms are neutral, the number of must equal the number of
- So, the atomic number of an element also tells the number of _____ in a neutral atom of that element.
- The number of _____ can be changed when determining the charge of an ______.

Masses

- The mass of a _____ is almost the same as the mass of a _____.
- The sum of the protons and neutrons in the nucleus is the _____ of that particular atom.
- have different numbers of neutrons, but they all have the same number of protons & electrons

Isotopes

- When writing isotopes, the _____ (or number of protons) will appear at the _____ of the formula
- The ______ (number of protons plus neutrons will appear at the ______ of the formula.
- The _____ will appear to the _____
 of the numbers
- NOTE: The different number of neutrons has NO bearing on chemical reactivity

Writing the Names of Isotopes

- For example ¹²₆ C would be named:

Try the following

Name	Symbol	# Protons	# Neutrons	# Electrons	Mass #
Carbon – 11					
	197 Au 79				
		1	2		
				25	55
Oxygen - 15					

Atomic Mass

- The number is usually located at the of the
- of the periodic table and has decimal places

Abundance and Mass Data for Copper						
	Isotope					
	Copper-63	Copper-65				
Number of protons	29	29				
Number of neutrons	34	36				
Atomic mass	62.930 amu	64.928 amu				
Abundance	69.17%	30.83%				

Calculating Atomic Mass

Try this one...

Calculate the atomic mass of germanium.

Isotope	Abundance (%)	Atomic Mass (amu)
Geranium-70	21.23	69.924
Geranium-72	27.66	71.922
Geranium-73	7.73	72.923
Geranium-74	35.94	73.921
Geranium-76	7.44	75.921

You can tell many things from an isotope formula

- Hydrogen has three naturally occurring isotopes in nature: Hydrogen – 1, Hydrogen – 2, and Hydrogen – 3. - Which is the most abundant in nature?

 - Which is the heaviest?
 - -__

-