Nuclear Chemistry

Nuclear vs. Chemical

- Occurs when bonds are ______and _____and/or
- may be rearranged Involve only Atoms remain

, and

- •
- Have energy changes Reaction rates are influenced by • •

- Atoms of one element are into another element
- May involve or
- Have _____ changes ٠ energy
- · Reaction rates are

Types of Radiation

 Unstable nuclei emit radiation to attain more stable atomic configurations in a process called _ _____.

Types of Radiation

• The three most common types of radiation are <u>(α)</u>,

Property	Alpha (a)	Beta (β)	Gamma (γ)
Composition	Alpha particles	Beta particles	High-energy electromagnetic radiation
Description of radiation	Helium nuclei ⁴ He	Electrons °β	photons %Y
Charge	2+	1-	0
Mass	$6.64 imes10^{-24}\mathrm{kg}$	$9.11 imes10^{-20}\mathrm{kg}$	0
Approximate energy*	5 MeV	0.05 to 1 MeV	1 MeV
Relative penetrating power	Blocked by paper	Blocked by metal foil	Not completely blocked by lead or concrete.

(γ).

 (β) , and

Alpha

- An _____ (α) has the same composition as a _____ nucleus—two protons and two neutrons—and is therefore given the symbol ______.
- The charge of an alpha particle is due to the presence of the two protons.

Alpha

- Because of their mass and charge, alpha particles are relatively slow-moving compared with other types of radiation.
- Thus, alpha particles are not very penetrating
- ______stops

Beta

- A _____(β) is a very-fast moving ______that has been emitted from a neutron of an unstable nucleus.
- · Beta particles are represented by the symbol
- The –1 subscript denotes the negative charge of the particle.
- · Beta radiation consists of a stream of

Beta

- Because beta particles are both lightweight and fast moving, they have greater penetrating power than alpha particles.
- A _____ is required to stop beta particles.

Gamma

- ____(γ) are high-energy (short wavelength) electromagnetic radiation. They are denoted by the symbol
- The emission of gamma rays does not change the atomic number or mass number of a nucleus.
- Gamma rays almost always accompany _____ radiation.

Gamma

- Gamma rays are high energy radiation
- They can only be blocked by

Deflection

- The effect of an electric field on three types of radiation is shown.
- Positively charged alpha particles are deflected toward the _____ charged plate.

Deflection

 Negatively charged beta particles are deflected toward the ______ charged plate.

Deflection

 Beta particles undergo greater deflection because they have considerably than alpha particles.

Deflection

• Gamma rays, which have no electrical charge, are _____.

Writing Nuclear Reactions

- When writing nuclear reactions, you must remember the ______
- What you start with has to equal what you end with
- You also have to remember how to write formulas for isotopes

Nuclear Reactions

• Write the reaction for radium 226 converting into radon 222

Nuclear Reactions

• Write the reaction of carbon-14 decaying into nitrogen – 14

Nuclear Reactions

• Write the reaction of uranim-238 undergoing alpha and gamma decay

Half Life

- ______ time required for ½ of a radioisotope to decay
- For example...
- You have 100 g of an isotope. How much is left after 1 half life?
- How much will be left after 2 half lives?

Fission and Fusion

- ______ splitting the nucleus into fragments
- Releases large amounts of _____
- Nuclear power plants use fission to generate power

Fission and Fusion

- nuclei _____ – combining of atomic
- Release large amounts of energy
- Require extremely _
- The lowest temperature possible is 40,000,000 K
- Know to occur on the sun