

Scientific Notation

Significant Figures

- Scientist use ______to determine how ______a measurement is.
- Significant digits in a measurement include all of the _____ plus one

For example...

- Look at the ruler below
- What would be the measurement in the correct number of sig figs?

- Look at the ruler below
- What would be the measurement in the correct number of sig figs?

The same rules apply with all instruments

- The same rules apply
- Read to the last digit that you know
- Estimate the final digit

Let's try graduated cylinders

Look at the graduated cylinder below

	60	
	50	

• What would be the measurement in the correct number of sig figs?

• Look at the cylinder below...

• What would be the measurement in the correct number of sig figs?

Rules for	Significant figu	ures
	Rule #1	

- All non zero digits are ALWAYS significant
- How many significant digits are in the following numbers?

274	
25.632	
8.987	

	Rule #2	
 All zeros between significant digits are ALWAYS significant How many significant digits are in the following numbers? 		 All <u>FIN</u> ARE s How m following
504		32.0
60002		19.000
9.077		105.002

Rule #3

- All <u>FINAL</u> zeros to the right of the decimal **ARE** significant
- How many significant digits are in the following numbers?

.0

5.0020

Rule #4

- All zeros that act as place holders are **NOT** significant
- Another way to say this is: zeros are only significant if they are between significant digits OR are the very final thing at the end of a decimal

For example

How many significant digits are in the following numbers?

1)

- 1) 0.0002
- 2) 6.02 x 10²³
 3) 100.000
- 2) 3) 4)
- 4) 150000
 5) 800
- 5)_____

Rule #5

- All counting numbers and constants have an infinite number of significant digits
- For example:
 - 1 hour = 60 minutes
 - 12 inches = 1 foot
 - 24 hours = 1 day
 - There are 30 students in the class

How many significant digits are in the following numbers?

1) 0.0073	1)
2) 100.020	2)
3) 2500	3)
4) 7.90 x 10 ⁻³	4)
5) 670.0	5)
6) 0.00001	6)
7) 18.84	7)

Rules Rounding Significant Digits Rule #1

- If the digit to the immediate right of the last significant digit is less that 5, do not round up the last significant digit.
- For example, let's say you have the number 43.82 and you want 3 significant digits

Rounding Rule #2

- If the digit to the immediate right of the last significant digit is greater that a 5, you round up the last significant figure
- Let's say you have the number 234.87 and you want 4 significant digits

Rounding Rule #3

- If the number to the immediate right of the last significant is a 5, and that 5 is followed by a non zero digit, round up
- 78.657 (you want 3 significant digits)

Rounding Rule #4

- If the number to the immediate right of the last significant is a 5, and that 5 is followed by a zero, you look at the last significant digit and make it even.
- 2.5350 (want 3 significant digits)

Say you have this number

• 2.5250 (want 3 significant digits)

Let's try these examples		
200.99	(want 3 SF)	
18.22	(want 2 SF)	
135.50	(want 3 SF)	
0.00299	(want 1 SF)	
98.59	(want 2 SF)	

Scientific Notation

· Scientific notation is used to express very ____ or very _

numbers

- I consists of a number between followed by ______to an
- The _ ___ can be determined by the _____ you have to move to number of get only 1 number in front of the decimal

Large Numbers

- If the number you start with is greater than 1, the exponent will be
- Write the number 39923 in scientific notation

Small Numbers

- If the number you start with is less than 1, the exponent will be _____
- Write the number 0.0052 in scientific notation

Scientific Notation Examples

Place the following numbers in scientific notation:

- 1) 99.343 1) _____ 2) _____
- 2) 4000.1
- 3) _____ 3) 0.000375
- 4) _____ 4) 0.0234

5) _____ 5) 94577.1

Going from Scientific Notation to Ordinary Notation

- You start with the number and move the decimal the same number of spaces as the
- If the exponent is _____, the number will be greater than 1
- If the exponent is _____, the number will be less than 1

Going to Ordinary Notation

Place the following numbers in ordinary notation:

- 1) 3×10^6 1)

 2) 6.26×10^9 2)

 3) 5×10^{-4} 3)

 4) 8.45×10^{-7} 4)
- 5) 2.25×10^3

\mathbf{U}_{j}	
4)	
5)	
,	

Calculations

• For example:

20.4 + 1.322 + 83

Addition & Subtraction Problems		
1) 1.23056 + 67.809 =	1)	
2) 23.67 – 500 =	2)	
3) 40.08 + 32.064 =	3)	
4) 22.9898 + 35.453 =	4)	
5) 95.00 - 75.00 =	5)	

Rules for Multiplication & Division

- When you _____ and ____ numbers you look at the **TOTAL** number of _____ **NOT** just decimal places
- For example:

67.50 x 2.54

Multiplication & Division Problems		
1) 890.15 x 12.3 =	1)	
2) 88.132 / 22.500 =	2)	
3) (48.12)(2.95) =	3)	
4) 58.30 / 16.48 =	4)	
5) 307.15 / 10.08 =	5)	

More Significant Digit Problems		
1) 18.36 g / 14.20 cm ³	1)	
2) 105.40 °C –23.20 °C	2)	
3) 324.5 mi / 5.5 hr	3)	
4) 21.8 °C + 204.2 °C	4)	
5) 460 m / 5 sec	5)	