

Electron Configuration

_____ – the arrangement of electrons in an atom

Pauli Exclusion Principle

- In order for 2 electrons to share an orbital, they must have ______spins
- In chemistry we designate spins with

_____.

• Therefore, if 2 electrons enter an orbital, they must enter _____

- A single electron with the same spin must occupy each equal energy orbital before additional electrons will pair up with opposite spins
- You must fill before you pair

Arrow Diagrams

- Before we begin writing arrow diagrams there are a few things you need to know
- s can hold a max of _____ electrons
- p can hold a max of _____ electrons
- d can hold a max of _____ electrons
- f can hold a max of _____ electrons

Arrow Diagrams

- s has _____ orbital
- p has _____ orbitals
- d has _____ orbitals
 f has _____ orbitals

Arrow Diagrams

 Lastly, you need to know the sequence of orbitals. I will NOT give you this on a test!

Arrow Diagrams

· Write the arrow diagram for sodium

Arrow Diagrams

• Draw the arrow diagram for Br

Electron Configurations

- Writing electron configurations is just a shorter way to write an arrow diagram
- You start with 1s and continue the configuration until you get the correct number of electrons

Electron Configurations

• Write the full electron configuration for K

Electron Configurations

· Write the full electron configuration for Kr

Noble Gas Configurations

- Noble Gas configuration is just a short hand way to write an electron configuration
- Steps
- 1. Find the element
- 2. Find the _____before that element (Group 8A) and place it in [brackets]
- 3. Move one spot
- 4. Start the configuration from there and keep going until you get to your element

Reading the periodic table

- _____ the first 2 columns of the periodic table (starts with 1s)
- _____ Groups 3A-8A, six columns (starts with 2p)
- _____ the center portion of the periodic table consisting of 10 columns (starts with 3d)
- _____ the two bottom rows of the periodic table consisting of 14 columns (starts with 4 f)

Noble Gas Configurations

• Write the noble gas configuration for Na

Noble Gas Configurations

- Write the noble gas configuration for Br
- Write the noble gas configuration for Mn

Final Entry Configuration

- Final entry configuration the ______ thing in an electron configuration
- It's like a road map to the element
- Can Identify the element

Final Entry Configuration

• What is the final entry configuration for Si?

Final Entry Configuration

- What is the final entry configuration for Ag?
- What is the final entry configuration for CI?
- What is the final entry configuration for Na?

Final Entry Configuration

- What element has the final entry configuration of 4p³?
- What element has the final entry configuration of 4d¹?

Periodic Trends

 Periodic Trends are trends that occur the periodic table and the periodic table

Metallic Character

• Metallic character – how much like a metal the element is

١	TH I	84. 2											88 13	NA 14	54. 15	94 16	95A 17	Ł
2	10	ON DR											10	DE TO	花	00	100	
3	L.	1	-		1	7	-	/=	÷	- 10		10	C.A.	100		15	10	1
4	No.	263	154	STR.	20	14 20	Se IM	11/2 10	德 760	18.2	100	1 220	2 100	100	TAS	-		C
5	1	10.0	10.2	0	ST NB	11	X	00	100	1 N	244	125	1	0	100	200	8	ľ
6		22	1	2	8	-	14	10	1	5	8	-	E	in the	30	3.	۲	6
7	474 1111	100 E	A LAC	4 2.01	-1 Db	*		4 an	and ame	*	*	*	Γ					
			1			12		-			0	-		100				

Ionic Radius

- When you talk about ionic radius, you are comparing an _____ and its
- When an atom has a ______ electrons
- Which makes it _
- For example, which will be larger:
- CI or CI⁻¹

Ionic Radius

- When an atom has a ______ electrons
- Which makes it _____
- For example, which will be larger:
- Na or Na⁺¹