Oxidation & Reduction Reactions Redox

Redox Reactions

- A reaction in which electrons are transferred from one atom to another is called an _______.
- For simplicity, chemists often refer to oxidation–reduction reactions as

This is LEO

He says GER

Determining Oxidation Numbers

- The oxidation number for any uncombined elements or diatomic molecule is ______
 - For example:
 - C
 - O₂
 - S
 - Cl₂

Determining Oxidation Numbers

- 2. The oxidation number for a monatomic ion is its _____
 - For example:
 - Ca⁺²
 - Br -1
 - $MgBr_2 = Mg = Br =$

Determining Oxidation Numbers

- 3. The oxidation number of Hydrogen is usually _____. The exception is in a metal hydride where the oxidation number will be
 - For example:
 - HCl → H =
 - H₂SO₄ → H =
 - NaH → H =

Determining Oxidation Numbers

- 4. The oxidation number of oxygen is usually ____ EXCEPT in _____ . Then it is _____

 - For example:
 - $MgO \rightarrow O =$
 - $KCIO_3 \rightarrow O =$
 - H₂O₂ → O =

Determining Oxidation Numbers

- 5. In binary compounds (nonmetal + nonmetal) the positive one is first and the negative one is second
 - For example:
 - PCl₃ → P = Cl =
 - $CO_2 \rightarrow O = C =$

Determining Oxidation Numbers

- 6. The sum of the oxidation numbers for all atoms in a neutral compound is _
 - For example: H_2O

Determining Oxidation Numbers

- 7. The sum of the oxidation numbers in a polyatomic ion is equal to the _____ of the polyatomic ion
- · For example:
- HCO₃-1

Oxidation Numbers

- Determine the oxidation numbers of all species in the following examples:
- H₂
- CaCl₂
- KCIO₄

Redox Reactions

- Oxidation reduction reactions (redox reactions) – electrons from one atom are to another atom
- _____ loss of electrons
- _____ gaining of electrons
- LEO says GER
- Oxidation cannot occur without reduction & vice versa

Redox Reactions

- substance that oxidized another substance by gaining its electrons (this is substance that is reduced)
- _____ substance that reduced another substance by loosing its electrons (this is the substance that is oxidized)

Identifying Components of a Redox Reactions

- Identify the oxidation numbers of all species, what is oxidized, reduced, the oxidizing agent, and the reducing agent in the following reaction:
- KBr + Cl₂ → 2KCl + Br₂

Identifying Components of a Redox Reactions

- Identify the oxidation numbers of all species, what is oxidized, reduced, the oxidizing agent, and the reducing agent in the following reaction:
- Ni + Cl₂ → NiCl₂

Balancing Redox Reactions (Oxidation Number Method)

Steps for Balancing Redox Reactions using the Oxidation Number Method

- 1. Assign oxidation numbers for all atoms
- 2. Identify what is oxidized, reduced, oxidizing agent, reducing agent, and the number of electrons gained and lost
- 3. Make the change electrons equal by placing a coefficient in front of the number of electrons gained and lost
- Move the coefficients down and complete balancing by conventional methods

Example

- Balance the following equation using the oxidation number method
- Cu + $HNO_3 \rightarrow Cu(NO_3)_2 + NO_2 + H_2O$

Now finish by conventional methods This just gives you a starting place

Another Example

- Balance the following equation using the oxidation number method
- HCI + HNO $_3$ \rightarrow HOCI + NO + H $_2$ O

Try this one..

- Balance the following equation using the oxidation number method
- $SnCl_4$ + Fe \rightarrow $SnCl_2$ + $FeCl_3$

One More...

- Balance the following equation using the oxidation number method
- Sn + HNO₃ + H₂O \rightarrow H₂SnO₃ + NO