

Binary Covalent & Acids

Molecules

- two or more atoms covalently bound together
- two of the same atom bound together

Diatomic Molecules

- Br I N CI H O F or the Magnificent 7
- These atoms never exist alone.
- They always come in pairs •
- For example:

 - For exampl Br \rightarrow Br₂ I \rightarrow I₂ N \rightarrow N₂ CI \rightarrow Cl₂ H \rightarrow H₂ O \rightarrow O₂ F \rightarrow F₂

Binary Molecular Compounds

- Binary Compounds consist of 2
- Before you can name binary covalent compounds, you MUST know the prefixes!

- Octa
- Nona • 9
- 10 Deca

Rules for naming Binary Covalent Compounds

- Name the _____ for atoms of the first element for the number of
- . Then name the first _
- for the number of Name the atoms of the second element
- Than name the _____ of the second element with the ending _____

- No charges are used in Binary Covalent Compounds
- If the 1st prefix is mono.... _____!
- When the prefix ends in an o or a, and the name of the element begins with a vowel, the o or a is often dropped

Examples

• What is the name of N₂O₄?

• Name SO₂

More examples

• Write the formula for dichlorine monoxide

More examples

• Write the formula for disulfur dichloride

- Acids can be recognized because the start with _____
- Examples
 - HCI
 - H₂SO₄
 - HI

- Acids are in _____ solution (aq)
- For the purposes of this class, we will assume that if it begins with H, we will name it according to the rules of naming acids
- If the HX were to be in a gas form, it would be named hydrogen x-ide

Rule #1 - naming acids

- If the anion ends in *-ide*, the acid will be named...
- Hydro (root) ic acid
- This is usually for H plus one element

	For example	
• HCI		
• HI		

Rule #2 – naming acids

- If you have an H plus an anion ending in *-ate*, the acid will be named...
- (root) ic acid

Examples

- H₂SO₄
- HNO_3
- H₃PO₄

Rule # 3 – naming acids

- If you have an H plus an anion ending in *—ite*, the acid will be named...
- (root) ous acid

Writing formulas for acids

- When writing formulas for acids you <u>MUST</u> look at the charges and bring them down!
- Examples

• HBr

• HCIO₃

More examples

- H₂SO₃
- H₂CO₃
- HF
- Nitrous acid
- Perchloric acid
- lodic acid
- · Phosphorous acid

Mixed examples (remember to figure out what type of compound it is 1stl)

- KCIO₂
- CO₂
- H₂SO₄
- NH₄Br
- CuCO₃
- Fe₂O₃
- HCIO

More Mixed Examples

- Carbon tetrachloride
- Phosphorous pentachloride
- Aluminum oxide
- Copper (II) nitrate
- Chlorous acid
- Hydrophosphoric acid
- Iron (III) hydroxide