Thermochemistry 1

Hess's Law Heat of Formation Heat of Combustion Bond Enthalpy

Hess's Law

Want:

 $C_{(graphite)} \rightarrow C_{(diamond)} \qquad \Delta H = ?$

Given:

 $\begin{array}{ll} {\rm C}_{\rm (graphite)} + {\rm O}_2 \rightarrow {\rm CO}_2 & \Delta {\rm H} = -394 \ {\rm KJ} \\ {\rm C}_{\rm (diamond)} + {\rm O}_2 \rightarrow {\rm CO}_2 & \Delta {\rm H} = -396 \ {\rm KJ} \end{array}$

Hess's Law Want: $2B(s) + 3H_2(g) \rightarrow B_2O_3(g)$ $\Delta H = ?$ Given:

 $\begin{array}{l} \text{Given:}\\ \text{2B (s) + } 3/2 \ O_2 \ (g) \rightarrow B_2 O_3 \ (s) \\ \text{B}_2 H_6 \ (g) + 3 O_2 \ (g) \rightarrow B_2 O_3 \ (s) + 3 H_2 O \ (g) \\ \text{H}_2 \ (g) + \frac{1}{2} O_2 \ (g) \rightarrow H_2 O \ (l) \\ \text{H}_2 O (l) \rightarrow H_2 O (g) \end{array}$

ΔH = -1273 KJ ΔH = -2035 KJ ΔH = -286 KJ ΔH = 44KJ

 $\Delta H_{\rm f}$ may be negative or positive, if the enthalpy change is negative then energy is released and the reaction is _______, if it is positive then energy is taken in and it is ______.

- What is the ∆H_f for CuCl₂ (s)?
- What is the ΔH_f for 2 moles of FeCl₃ (s)?
- Remember, these are heats of FORMATION which means that the compound is being produced. If it on the reactant side, you must ________the sign!

Standard Enthalpy of Formation (ΔH_c)

- Standard Enthalpy of Combustion enthalpy change when one mole of a substance is completely burned in oxygen under standard conditions.
- Energy is usually released in such a reaction Δ $\rm H_{c},$ so it will usually be negative.
- ΔH_c [C₂H₆(g)] = 1565 kJ/mol means...

Write the following Equations

- The standard enthalpy of combustion of CH_4 (g)
- The standard enthalpy of combustion of Al(s)

Example 1 (do not use Appendix)

- Calculate the standard enthalpy of formation of ethane (C₂H₆), given the following combustion data...
- C(graphite) = -393 kJ/mol
- H₂(g) = -286 kJ/mol
- C₂H₆(g) = -1560 kJ/mol

Example 2 (do not use appendix)

- Calculate the standard enthalpy of combustion of propan-2-ol (CH₃CH(OH)CH₃), given the following data
- Enthalpies of combustion for C(graphite) = -393 kJ/mol and H₂(g) = -286 kJ/mol.
- Enthalpy of formation of propan-2-ol = -318 kJ/mol

Examples

- Calculate the ∆H for the following reaction using the appendix
- $C_{3}H_{8}(g) + 5O_{2}(g) \rightarrow 3CO_{2}(g) + 4H_{2}O(I)$
- Is the reaction endothermic or exothermic? Why?

Examples

• How much heat will be released from the combustion of 1.80 g of C₆H₆. Use the heat of formation data in the appendix.

Example

- The Thermite reaction can be used to produce molten iron for welding railway tracks together.
- Fe₂O₃(s) + 2Al(s) Al₂O₃(s) + 2Fe(s)
- Calculate the enthalpy change in the Thermite reaction, given the standard enthalpies of formation of iron (III) oxide and aluminum oxide are -823 and -1675 kJmol⁻¹, respectively.

Bond Enthalpies

- The strength of the bond in a diatomic covalent molecule is given by the bond dissociation energy.
- For example hydrogen, H₂ or H-H
- $H_2(g) \rightarrow 2H(g)$

BDE= +436 kJ

Bond Enthalpies

- In order to break a bond, energy must be put in (an _____ process with a _____ energy change)
- When **making** a bond, **energy is released** (an _____ process with a _____ energy change).

Bond Enthalpy Example 1

- Calculate the standard enthalpy of the reaction below.
- $CH_3CH=CH_2 + H_2 \rightarrow CH_3CH_2CH_3$

Bond Energy Data

Bond	BET in kJmol ⁻¹
F-F	154
C=O	743
O-H	463
Br-Br	193
C-Br	276
H-Br	366
CI-CI	239
C-O	360
H-H	436
C-C	348
C-CI	339
C-H	412
C=C	612
H-F	565
H-CI	427
C-F	485
1-1	151
C-I	238
C=C	837
C-N	305
H-I	299

Bond Enthalpy Example 2

- Calculate the enthalpy change for the reaction below.
- $CH_3CH=CH_2 + Br_2 \rightarrow CH_2BrCHBrCH_3$

Bond Energy Data

Bond	BET in kJmol ⁻¹
F-F	154
C=O	743
O-H	463
Br-Br	193
C-Br	276
H-Br	366
CI-CI	239
C-0	360
H-H	436
C-C	348
C-CI	339
C-H	412
C=C	612
H-F	565
H-CI	427
C-F	485
1-1	151
C-I	238
C=C	837
C-N	305
Hel	200