

The Mole

- _____ SI base unit used to measure the amount of a substance.
- A mole of anything contains ______ representative particles.

Mole – Representative Particle Calculations

• Calculate the number of atoms in 3.50 moles of copper

Mole – Mass Relationship

- mass in grams of one mole of any pure substance

Calculating Molecular Mass

• What is the molecular mass of (C₃H₅)₂S?

Mole – Mass Calculations

• How many moles of Ca(OH)₂ are in 325 grams?

Mass – Particle Conversions

How many atoms of gold are in 25.0 g of gold?

 Ammonium nitrate decomposes into dinitrogen monoxide gas and water.
Determine that amount of water produced if 25.0 g of ammonium nitrate decomposes.

Limiting Reactants

- A chemical reaction will stop when you run out of one of your products
- _____ limits the extent of the reaction.
- Determines the amount of product that is formed.It runs out first
- _____ left over reactant

Example

- $S_8 + 4Cl_2 \rightarrow 4S_2Cl_2$
- 200.00 g of S_8 and 100.00 g of $\rm Cl_2$ are combined in a flask. How much $\rm S_2 Cl_2$ will you get?

Other questions

- What was the limiting reactant?
- What was the excess reactant?
- How much excess did we have left over after the reaction was completed?

• % = (part / whole) x 100

- actually got in the lab.
- You measure this on a balance
 - _____ how close you were to

the correct answer

% yield = (actual / theoretical) x 100

% Yield Example

- $K_2CrO_4 + 2AgNO_3 \rightarrow Ag_2CrO_4 + 2KNO_3$
- What is the theoretical yield of Ag₂CrO₄ formed from 0.500 g AgNO₃ ?
- What is the % yield if 0.455 g is actually formed?

% Composition

- % = (part / whole) x 100
- Calculate the % Composition of iron (III) oxide
- Empirical & Molecular Formulas
 - _____ the smallest whole number ratio of elements
- _____ the true number of elements in a compound

Steps for Calculating the Empirical Formula

- 1. List your givens
- 2. Change % to grams
- 3. Change grams to moles
- 4. Divide everything by the smallest number of moles
- 5. Write your formula

Empirical Formula Problem

Calculate the empirical formula for a compound containing 48.64 g C, 8.16 g H, and 43.20 g O.

Steps for Calculating Molecular

- 1. Calculate the empirical formula
- 2. Get the molecular mass of the empirical formula that you just determined
- Divide the experimentally determined molecular mass (given) by the molecular mass of the empirical formula
- 4. You will get a whole number
- 5. Multiply everything in the empirical formula by this number

Molecular Formula Problem

 Calculate the molecular formula of a compound containing 40.68%C, 5.08%H, and 54.25%O with an experimentally determined molecular weight of 118.1 g/mol

Empirical Formula with Combustion Data Steps

- 1.Convert g CO₂ to g C
- 2.Convert g H_2O to g H
- 3.Subtract to get g of other element
- 4.Work Empirical Formula problem as usual

Example

• A compound is comprised of carbon, hydrogen, and nitrogen. When 0.1156 g of this compound is reacted with oxygen, 0.1638 g of CO_2 and 0.1676 g of water are collected. Assuming that all of the carbon in the compound is converted into CO_2 , determine the empirical formula of the compound.

Example	N N
_ //di.iip.io	

One more example

• A 0.821 g hydrocarbon sample was combusted to yield 1.866 g CO_2 and 0.7639 g H_2O . The molecular mass was determined to be 116 g/mol. Determine the empirical and molecular formulas of the compound.